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AN IMPROVED FIRST-APPROXIMATION THEORY FOR THIN SHELLS

By J. LYELL SANDERS, JI¢.

SUMMARY

An improced .fo_'m of Love's fir._t-approximation

theory jot thin shells is dericed. In contra,_'t to the
re,_'ults _f Loce's theory, all strains in the proposed

theory vani._h /or rigid-body motion._'. Expression._"

.for the stres,_' resultants and couples which ._ati._fy
the homogeneou.s equilibrium equations are given.

in terms oJ three stress Junetion,_. The special.forms

of the effuation._ of the new theory in the case oJ a

circular cylinder are gieen in an appendix.

INTRODUCTION

Linear theories of thin shells may be (|iv|tied

roughly into two classes, namely, l_ove's first

approximation and slight modifications of it, (refs.
1 and 2), and those theories which stem fi'om

Love's second approximation (ref. 1). Most of the

papers in the literature which have dealt with

the genera! linear theory of thin shells have been

concerned with improvements upon l_ove's set,end

approximation. An excellent recent survey of th(,

subject is given in reference :_. The present

pap(,r is concerned with improving l,ove's first

approximation.
A first-approximation theory for thin shells is

distinguished from a second-approximation theory
in that in thc former theory the eft'cots of t.rans-

verse shear and normal strain are neglected. The

latest: forms of Love's first-approximation theory

(as set forth in rcfs. 2 and 4) still ,.ontain an in-

consistency which the present paper removes.
The inconsistency in the equations of the theory

is that, except, for the spcciat case of axisymmetric

loading of shells of revolution, the strains do not
all vanish for small rigid-body rotations of the

shell.

In the present analysis a modified first-approxi-
mation theory is proposed which removes the

inconsistency without complicating the system

of equations in any cssentitrl way. For simplicily
and convenience the theory has been developed

almost entirely as a two-dimensional one with

use of the principle of virtual work as the main
tool in the derivations. The derivation does not

follow the method of descent from the three-

dimensional equations of elasticity nor is it. based

on a variational principle,
Results are given in the, form based on the use

of the lines of curvature as coordinate curves it)

the middle surface. As a step in the development

of an integration theory, a set of three strain

conq)atibility equations is given which lead to

expressions for the stress resultants and stress

couples in terms of three stress functions. Par-
ticular results for a ciretflar cylinder are inchufl,d.

SYMBOLS

h shell thickness

n coordinate normal to middle, surface
unit normal vector to |ni(ldh_ surface

7 radius vector to mid<lie surface

71, t_ unit tangent vectors to mi(ldle surface
1,;ha

D bending stiffness of shell, 12(1 -- V')

E Young's modulus

)1111, _1122, i1,I12, .ll_i stress couples

ill_, Me stress couples for a circular cylinder
,1-7_2 modified stress couple

_1-}_0 modified stress couple for a circular

cylinder

NH, N..,._, N,2, N2L stress resultants

N,, No stress resultants for a circular cylinder
' 1
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_l, _2

@ll_ _22_ _12_ _21

KIt* K22_ KI2_ K2I

Kz, K8

_12

KzO

P

Pt, P2_ Pn

_, X2,

x

modified st ress result ant
modiiied st ross result,alit for a ci reuhtr

cylinder
t ransveI'se stress result ant s
lra,nsverse stress resultants for

circular cylinder

priiwipal radii of curva(ure
disphwemems tangentia,1 to middle

surface

disphu'enient nornlitl to middh' sur-
face

coefficients inmetric forIli of middh,
Sul'fae(_

tI'llJIsvPrsP SNPIlI' slrains

strains in middle surface
strains in middle surface for a cir-

euhu' cylinder
bending and twisting strains
bending strains for a circular cyl-

inder

nioditied twisling strain
modified twisting strain for it cir-

cular cylinder
Poisson's ratio

coordinates on middle surfu,ce

coeilieients (lcfine(I in equation (A 1)
rotatiolis
stress functions

COllStttll[ rotatioit vector

constant displa('enient vector

DERIVATION OF SHELL EQUATIONS

GEOMETRY

l,et the lines of curvil,ture (ill the middle surface
of the shell be used as all orthogon, a| coordinate
net and let (t and (,, denote the coordinates (as

in ref. 2). l_et, the tirst, fundamental form of the
middle surface be given by

ds2= al2d_t2 + a.2d(., 2

V¢IIPI'O <tS is tile line elenient. Let the principal

radii of curvature be I_'1 and ]12.

EQU_UlIRllSMEQUJTIONS

The IO stress resultants and couples (or <'gun-
eralized stresses") which act on sections of the

shell parallel to the coordinate curves are shown
in figures 1(a) and l(b). The following six equa-
tions of static equilibrium are well-known and

n

l'

MI2 M21

(a)

f
i/

/ N22

(b}

(a) Stre_s couples and rotations.

(b) Stress resultants and displaeenlents.

FIGUR+,: 1.--0ricntation of coordinates, displacements,

roiatkms, stress resultants, and stress couples.

general]v accepted (rcf.2):

ba_N_,+b_lN21 . b_i _, 5_2 • _ a,2

(1)

5a2N], i)alN22 ida2 7t," _al v ala2

+-76-_(1
(2)

:)o_2Ql_bOhQ2 2%rll *X'22"

=°

ba2Mll.t. ()_l_-_f21 k_l ]/jr _)O_2

_a • _a ""'_-_7 M.>,>--=,,,>Q,=o

(4)
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_(+2.lI1., O(+_'ll.,., Oa., __%
++(- + ++.:-++5_ ..+, 0+++;_+,,-,+,o_+Q+=0

Mp+ M.,l
"\-'_- "\_'+)6.- ]?_= o (c,)

Distril)uted load terms have been omitted for

the sake of simplicity. The generalized stresses
appearing in these equations nmy 1)e detined in
terms of integratiorts of three-dimensionM stresses
through tile thicl_ness of the shell as in reference 2.
For simplicity in the pr(,sent development, how-

ev(,r, they are intro(hwe(I as basle elements of t+
two-dimensional theory but are otherwis(, left
ttn<hqin(,d. IAkewis(, three (lisl)la(.(mwnts 1_, 12,,
an<l II" an(l three rotations ¢i, ¢_, aim ¢,, (shown
()It figs. l(a) a.+ld 1(1))) tu'(, introduced as basic

quantit+ies of a two-dinwnsional theory lint are
otlwrwis(, left tmdefined.

STRAIN-mSPL*CEMENTRErATmNS

A set of l0 generalized strain quantities (<)t+e
eorresl)omling to each generaliz(,d stress) may l)e
derive<l in terms of the <lisl)laeements anti rotations
t>y means of a prin<'iple of virtual w(,rk. In

the present c,lse this principh, is

+(+o+-.+++.-++++++,+o. .+ • ..+ }.,+..,++=<)• & .-+ ++3.+++_ ++.+,-+++M,,-,+,,++q+)++++,+,.+_:,.,+-A.+,+£- i;+;)++++

This i_+t(,gral vanishes t)y virtue of e(tuations (1) to (6). Integrating t)y l)arts yields

(7)

(8)

where the double integral extends over a region of

the middle surface of the shell enclosed by the

curve C. Of the two integrals in equation (8)

(which equal each other), the first represents the

virtual work of the forces acting on the boundary

C, and the second must therefore represent the

virtual change in strain energy of the portion of the

shell within C. These considerations lead to the

following definitions for the 10 strain quantities:

1 O( + 1 Oa_ , IV
+"=a_ -5_, a_% 5_; "-[-Rt (9)

l Ol'_ 11 0o_,, B....
+_= 0£ r,,+]_,; (t0)

t 12-- Oil _)_1 0'10'2 _)_2 [ 71-on (11)
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1 0(:l 1 0a2
e2t=a,, O_z ala.,. O_l_"r2+4J" (12)

1 0___ 1 0a2
(14)

relations (see ref. 1, p. 517, eqs. (10))

O_I \ RJ Rz O_I
f

1 9.,I
O_2\RI/ R2 OG J

1 04_2 1 Oal , 4a.
K"Z=a, _)1_, a,a20_icP'--R, (15)

1 Oqh 1 0a_ 4). (16)

1 0W U, k_ (17)
W:al OiT, Ill

Vz..... -{-_ (18)
a2 Of,,

Each of these 10 strain quantities vanishes for

small rigid-body motions as will be shown in ap-

pendix A.
I_IMPLIFICATION OF RESULTS

The quantities 3'_ and y_ are transverse-shear

strains com'esponding to the transverse-shear stress
resultants Q_ and Q._. In the theory derived

herein, these two strains are neglected. Setting

w:w----0 gives the fo]lowing expressions for the

rotations ,_t and 4_.,in terms of _,r, (_'2, and W:

1 Oil"O,-- (19)
al 06

U_ 1 0if'
_b2 R., a_ OG (20)

Tlw rotation about the normal +. may I)e eah, u-

lated in terms of UI and Uz by several methods

(for example, by taking the surface curl of a

displacement vector, see ref. 5); in any ease, tlw
result is

1 [0%U: 0_,_:l'_ (21)
:

Froni a comparison of equations (11), (12), and

(21) it follows that

el_----_2i (22)

The definitions (eqs. (19), (20), and (21)) for q_,

q)z, and _, taken together with the Codazzi

(23)

and th,, defizfitions (cqs. (15) and (16)) for _z

and _2_yield the following identity:

1 1 1 1 1

The area integral in equation (8) may be
written

+M,z_K,_+:G,_.:,+M::_).,,_#f,d& (25)

By I_sing equations (22) and (24) this integral

may bc written

5;;, +2[;_:.+ >+ ;,)<.l.
"1 r 1

_ M_l

+ m,) +_l,._&<z_ _ a,a,fl_,dG (26)
.3

I:et

_,_= 1_(N,2+ A:_,) (27)2

-- 1
ll:/l 2= 2 (£_]12-_-:_,_'.21) (28)

_ 1
K,Z=2(K,Z+ _z,) (29)

If the erm ,_I_2--,_I_1 is neglected, the expression
(26) thin becomes

ff( NI 'lfil,-t- 2_12'e 12_- N22(_i_ 22 -t- ]_11'KI 1-_-

iJi ¢

Note that N_2 and N_l occur in expression (26)
l

only in the combination _ (N_2+5,r2_) and that

N_--N2_ is not being neglected in expression (30).
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Tile quantity 3l,:--Jtl:, need not, necessarily be

neglected in the present derivation because Nlz
couhl be defined to be the whole coefficient of

2($_1_ in expression (26); however, the simplifica-

tion (27) seems to be justified because

1 )(]_12__-_/-21 ) would ordinarily be small1(, coin-

pared with I (N_2÷N2_).

MODIFIED EQUILIBRIUM EQUATIONS

The numl)er of stress quantities aside from Q1
and Q2 has been reduced from eight to six (as in

Love's first approximation) but the equilibrium

equations (l) to (6) are obviously in need of some

modification. In the usual derivation of the equa-

tions of Love's first, approximation theory, the
distinction between Nl2 and N21 and between M_

and -_I21 is tirol)peal and equation (6) is suppressed.

It. is argued that equation (6) is satisfied iden-

tically by exact expressions for the stress result-

ants and couples (in terms of integrals of stress

through the thickness of the shell). However,

the exact expressions are not actually used in

the theory. In the present, theory a modified set

of equilibrium equations is derived by another

application of the principle of virtual work start-

ing from an energy expression equivalent to
expression (30).

Since all the strain quantities are expressible

in terms of U_, U2, and W, such expressions could

be introduced into equation (30), in which case

an application of the principle of virtual work
would lead to three equilibrium equations. A

slightly different procedure leading to essentially
equivalent: results is used instead. It is conven-

ient to reintroduce the quantities Q, and Q2 and

to use 4h and _2 as they are rather than to express

them in terms of U_, U:, and W. The expression

for the virtual change in strain energy may then

be written as

(31)

If the portion of the shell within C is in equilibrium, by the principle of virtual work the left-hand

side of expression (31) must equal the line integral on the right-hand side, in which case the area

integral on the right must vanish. Since the virtual displacements may be assumed to be arbitrary
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and independent, tile following conditions of

equilil)riuIn nmst hold:

(Sa2Nl i_1_i!)a_Arl__F bc_l _ c.)a,,

r(_: _ :, <32)2 a_ Lkl¢_ A_/

5a2Q, __bcq Q2_(N,,+:V._z'_ ala2=0 (34)
a& c.)& \ R, Ii_2]

()O¢2"_/11 je (-._Ot,-_112._]_(-_O_1 -_1,,_012 _,_i22--O/,Og2/k),= 0

b& -- c5_2 --b}., " O&

(35)

Oa.,_.tll.,+ (.)a,.l[.,.,+ Oa.2 _ _a! M.--a_a2Q,,=O

(36)

These equations (eqs. (32) to (36)) are the equilil)-
rium equations of the proposed new theory.

STRESS-STRAIN RELATIONS

The set of stress-strain relations which is ap-

propriate depends on the mechanical properties
of the nmterial of the shell whi('h are not neces-

sarily elastic. In the important case of an iso-

tropic elastic material, the stress-strain relations

may be taken to be the same as those in I_ve's
first approximation, namely:

Eh a
Eh_u NH--vN_., 12 Kll=_l:ln--Wl122"

Eh_ .... A:,2--vNll Eh3 _22=:llo.2--vBlu - (37)
"" " 12 "

- Eh'_ - (1 -_-v) 21I%2

where h is the shell thiekness, E is Young's

modulus, and r is Poisson's ratio.

MODIFIED STRAIN-DISPLACEMENT RELATIONSI S _

For convenience, the strain-displacement rela-

tions of the new theory arc repeated here.

_"=._ _+_,._, bg -

1

- 2_,,,_ a_,:+_' a_.,-5_ _ '-_7 2:

0_1 0_10_2 _)_2

1 ;-)(_2, l 5c_:

F_2=:_1 _ a.,

• : / 1 1 \ (ba2l,'20oql;,_q
+_ U:2-_) \ o_, 8_; /j

(38)

It is sh(,wn in appendix A that each of these strain

quantities vanishes for small rigid-body motions.

BOUNDARY CONDITIONS

The :)oundary integral on the right-hand side

of equation (31) may be used to (letermine the
proper :orm of boundary conditions to be applied

in the I resent theory. Since the process of (hwiv-

ing then is well-known, only tile results will be

given iv:re.

On a: e(Ige where }_ is a constant prescribe:

A_,+/_, 3IH or l _, (39a)

3 1 )_,_ or I,:2 (39b)

a2 b}2 or II" (39e)

all"

3/1! or _)(1 (39d)

On an 'dge where (z is a constant, the conditions

are the same as those in expressions (39) except

that th.? subscripts 1 and 2 are interchanged.

COMPATIBIIJTY EQUATIONS AND STRESS FUNCTIONS

Tile ,Ax strain quantities _,,,e22, _,2,K,,,_2, and
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_v, (eqs. (38)) sat isfy identically the following compatibility equations:

00_2K,2. 2 _Oll_l • __ - { _a'_"4_6a,*'+6a"
--0_2 K1. Or5 _1 , I_j _'_+__, It,-- _

()0/1 gl i ()062K12 ()Go-- ()OZ 1 () 0/i t_ i, _.]._ ()_i_2 _ 1 2.4 ()0/1 • ()0_'2 12)_[. ¢_22 I_) 1 ) _12-]= 0
(41)

L(- ()O/1_11 -I-- ()O_2_12..4_ _O/1 . _O_.)_,o')'___O/it_.l(K1}l _[_K22")__0 (42)

If in equations (40) to (42) t. is replaced t)__v--M_:,
e22 is replaee(I by ---][11, e12 iS repla('ed by Air.,, Kll is

replaced by N.,:, a'zz is replaced by Nu, and _lz is

replace(I by--N_z, then these equations become
identical to the nmdifie(t equilibrium (,qua lions

(eqs. (32) to (36)) written in the form with QI
and Q2 eliminate(t. Because of this remarkabh_

('il"eumstance expressions for the stress resultants

and ('ouph,s which satisfy the homogeneous equi-

libriuIn equations identically can be written clown

by inspection by using the strain-displacement

relations (38) and making these repla(.ements.

Three stress flmctions corresponding to the three

displacements are introduced. Let x_ correspond

to -- lr_, X_ correspond to -- U2, and _bcorrespond to

--11". The following expressions then satisfy the

equilibrium equations identi('ally:

(43)

(44)

__L x, a¢

' (.._Ot l ( X 1 ' _/_) 1 b_ (X_ 1 b_)

-4-1_(1_--1"_( _"3x2 ha'x'_ (45)
4a_a2\R2 R_J\ b_ b_.., J

-_lu 1 bX2 1 b_ X_q _ (46)
or2 b_2 "[" b_t ll,

ot to_ _

" O_ 1 6& ala2 b_2 x24 ll_

524304- 60 2

(47)

(48)

The essence of the new theory is contained in

equations (32) lo (48). The particular forms of
these equations which are appropriate to (,ircular

(,ylindrieal shells are presented in appendix B.

CONCLUDING REMARKS

An improved first-approxinmtion theory for
thin shells has 1)een derived. The strain-displace-
ment relations are more realistic than those of

Love's first approximation because all strains
vanish for small rigid-body motions of the shell

whereas for Love's theory they do not.

In l)revious derivations of a first-approximation

theory the nmnt)er of unknown stress resultants

ainl couples are re(luce(I from 10 to 8 by making

approximations in the expressions for the result-

ants in terms of integrals of stress through the
thickness of the shell. In the present derivation
the reduction in number of stress unknowns fi'om

10 to 8 is made by combining some of them in a

way suggested by a certain expression of the

principle of virtual work which includes the work

clone during a small rotation about the normal to

the shell. It is not. necessary to drop any terms

in the expressions for the stress resultants and

couples in terms of integrals of stress through the
thickness of the shell.

The compatibility equations for the strain

quantities involved in the theory lead dire('tly t.o

expressions fox" the stress resultants and couples
in terms of a set of stress fimetions. These ex-

pressions for the stress quantities satisfy the

equations of equilibrium identically.

LANGLEY RESEARCIt CENTER,

NATIONAL AERONAUTICS AND _I'ACE ADMINISTRATI()N_

L_NaLEY FIELd), VA., February _, 1959•



APPENDIX A

SMALL RIGID-BODY MOTIONS

l,et 7(&,_2) be the vector from tile origin to a

point., on the middle surface of tile shell. If _

and t2 are unit tangent vectors in the & and _2
directions, respectively, and -n=t_Xt_ is tile unit

normal vector 7 can I)e expressed in tile form

7=p,i,+,_i_+p;_ (A1)

Equation (AI defines the quantities p_, m, and p,

as functions of _ and _2. The components &, _2,
and _. of a constant distdacement vector S and the

components oJl, oJ,,, and o_, of a constant (small)

rotation vector _ are defined in the _,_2,n co-
ordinate system by the equations

S=_,7,+65_+_,,_ (h2)

_}= --o_2},-t-_,7,+ o_,,'_ (A3)

The displacement vector "_=U1TI+Uj2+W_ of

points on the middle surface of the shell due to the

rigid-body motions A and _ is given by

U=A+i2X7 (A4)

or in component form by

[ ;1= _l+ P.UJl-- p_.,ce,_1
/

[ :2:_2 _- pnw,2-_-pl_On_ (AS)

The rotations are given by

¢_:c°z 1

By using the equations

0S 0Z
-- =0

0& b_.,

(::)7 -

b(=_,, t ,
 -bL =° }

(A6)

(A7)

together with the well-known equations for the

derivatives of t_, t., and _ with respect to & and _2
(see ref. 2)

b_'l 1 b_l- al b'/j 1 bae-

07_ 1 bah- 07_ 1 i)a2- as

the following formulas may be derived:

0til ='<_ a2 b_2 171 b_2 _1 blil

O& _2bt:2 b_2=a_ alb& R2

bPn _'_IPl bPn a2P2

(A8)

b_it _2 bat a,_. bth _2 baz

b,_ a2 bt_: hi'z2 a_ b_ it2

b& l't 6_2 112

(A9)

(_0)I 502 ba I _s) 1 0) 2 bO_ 2 Ot2fM"

b_| Ol 2 b_2 b_2 Ol I b_l It 2

b_o2 _o_hal aloe. 5% _ Oa2
b_ a2 Or:2 { ltt b& a_ b&

(AIO)

With the use of equations (A8) to (A10) it can

be shovm that the strains given by equations (9)
to (18) or by equations (38) vanish when the

rigid-body displacements and rotations given by
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equations (A5) and (A6) are imposed.

ample, consider _t2 (given by eq. (15))

For ex-

K12=-- 601

The same is true for K_L and hence for _t2=

I(K_2÷K2,). The strain in Love'scorresponding 7"

theory given by equation (44) of reference 2 as

does not vanish except in the special case of axi-

symmetric ]oading of shells of revolution.



APPENDIX B

EQUATIONS OF THE THEORY FOR A CIRCULAR CYLINDER

In tilt, case of a. circular cylind(,r h,t

F

2-- 0 l" 2= l" R,., = R a 2= R J

Th(' ('quilil)rium equations ar(;

OX _ Oo 2);_ oo =

0_-'_o+1 _.¥ont 1 ().'_.o+_l_ q0=0
b, _-_ 2-R Ox 1:

_)zlL+ 1 0-_.o -

i),lLoO.r2r I:IOMO_)O Qo 0

The strain-disphwement equatiot)s are

i)l'

1 61". 11'
_°=7/0_+_?

The stress-strain relations are

1 i)21V 1 01,"

K°=--IF 002 IF O0

1 O_W 3 01'"

%o-- R i)x i)O 4R bx

_, fiJh

* 1 -- v 2 M_=/'(_++ wo)

• Eh

l_ 'h

-_o= 1 __ v2 (1-- v)ezo

m

-11_o=I5 (1- _'),5o

10

(B1)

(B2)

(B3)

(B4)
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Eh 3
where D--

121l --v _)
and h is the thickness of the shell. The compatibility equations are

OKo 1 O_o 1 ¢)e,o
O;:--R b}--2i? = 5d =0

0_,0. 1 0K_ 3 0exe 1 _3_
- _5 +)? bo +2_e 35 -)?: ao =o

-_, _ _, _o-12 bO_-i? _:=o

(B5)

The expressions for the stress resultants in terms of stress functions are

1 Ox., 4+
1 02_/, 1 0x,a Jl, R O0"+ ItA,_: II z O oz R 'e 00

. 02¢+ .. 6x,
A' o= -O-fi g l o= o,r

_o=__ 1 _O'e_q_ 3 bXg__l _x ! , 1 aX I , _X,,'_

(B6)

Some comparison with other theories of circular

cylinders is afforded by the following means. Let

kr

U=Ue n cos *_0

V= 1'¥ te sin nO

Xr

W--1't7 R cos nO

(B7)

where n is the number of the harmonic. Use of

equations (B7), (B3), (B4), and (B2) lea.<ls to the

following equation for the determinalion of X:

2_--4n_"2_6+ E_ +6n,'e(n_-- l ) 3 M--4n2(n'e-- l )'-'X2

+n40g'- 1)_=0 (B8)

h2
where K=_2-1¢ _. Terms of higher order in K than

those shown have been negh, cted in eqtmtion (B8).
The correspomling equations for X for several ot her

theories of circular cylindrical shells are given by
Naghdi and Berry in reference 6. For instance,

from l,ove's theory the following equation is ot)-
t ained :

ks-- 41/}X6-- [1 _v-" + 6j, t4-- 212 _- u) n?-] X4qt- E-- 41t"

, _ 5+3v _7

+2(3+_m -- _,__] x%_(n _- l)_=O

anti Flfigge's theory yiehls

Xs-- 212n2-- v) X6-_-(_+ 6n_-- 6n_) M + [-- 4n'_

+ 2 (4 --_)n 4- 2 (2 --v) n2]X'_+ n_ (_-- 1) -_--0

Equalion (B8) is remarkably free of Poisson's

ratio terms compared with these equations and the

corresponding equations for other theories.
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